Computational Biology Group

The aim is to improve outcomes for patients by understanding the molecular drivers of their tumours. We can use this data to improve outcomes in patients today, through making better treatment recommendations, as well as long-term to better understand cancer.

Group Leader

A/Prof. Mark Cowley

Research

Enabling Personalised Medicine for Paediatric Cancer

Powering ZERO – Australia’s National Paediatric Cancer Clinical Trial

Whole Genome Sequencing Analysis Methods

Decoding the Noncoding Genome

Liquid Biopsy

Tumour Immunoprofiling

Publications

Find more of Mark Cowley’s Publications at Google Scholar or Scopus

Lau, L.M,S., Quang, D.A., Mayoh, C., et al. Precision-guided treatment improves outcomes for children with high-risk cancers. Nature Medicine 30(7): 1913-1922 (2024). doi: 10.1038/s41591-024-03044-0. 

El-Kamand, S., Quinn, J.M., Sareen, H. et al. CRUX, a platform for visualising, exploring and analysing cancer genome cohort data. bioRxiv (2023). https://doi.org/10.1101/2023.07.25.550585

Sullivan, P.J., Gayevskiy, V., Davis, R.L. et al. Introme accurately predicts the impact of coding and noncoding variants on gene splicing, with clinical applications. Genome Biol 24, 118 (2023). https://doi.org/10.1186/s13059-023-02936-7

Davis, R.L., Kumar, K.R., Puttick, C., et al. Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis. Neurology 99(7): E730-E742 (2022).

Minoche, A.E., Lundie, B., Peters, G.B., et al. ClinSV: clinical grade structural and copy number variant detection from whole genome sequencing data. Genome Medicine 13(1): 32 (2021)

Wong, M., Mayoh, C., Lau, L.M.S. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med 26, 1742–1753 (2020). https://doi.org/10.1038/s41591-020-1072-4

Gayevskiy, V., Roscioli, T., Dinger, M.E., Cowley, M.J. Seave: A comprehensive web platform for storing and interrogating human genomic variation. Bioinformatics 35(1): 122-125 (2019).

Kumar, K.R., Cowley, M.J., Davis, R.L. Next-Generation Sequencing and Emerging Technologies. Seminars in Thrombosis and Hemostasis 45(7): 661-673 (2019). https://doi: 10.1055/s-0039-1688446.

Minoche, A.E., Horvat, C., Johnson, R., et al. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genetics in Med 21(3): 650-662 (2019). https://doi: 10.1038/s41436-018-0084-7

Ewans, L.J., Schofield, D., Shrestha, R., et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in Mendelian disorders. Genetics in Medicine 20(12): 1564-1574 (2018). doi: 10.1038/gim.2018.39

Mallawaarachchi, A.C., Hort, Y., Cowley, M.J., et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. Eur J Hum Genet 24(11):1584-1590 (2016).

Waddell, N., Pajic, M., Patch, A.M., et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540): 495-501 (2015). https://doi: 10.1038/nature14169.

Software

Find more of our software at CCICB on GitHub

Graphene

Whole Genome Sequencing Pipeline for Paediatric Cancers

Common Workflow Language

Carbonite

RNA-sequencing Pipeline for Paediatric Cancers

Common Workflow Language

Introme

Introme prioritises coding and noncoding splice-altering variants for clinical variant interpretation

Shell

GPL-3.0

13

consHLA

A Next Generation Sequencing Consensus-based HLA Typing Workflow

Common Workflow Language

Online Tools

Publicly Available

SpliceVarDB

Splice Variant Portal

Click for more details

CRUX

Cancer Cohort Portal

Click for more details

Credentials Required

ZeroDash

Clinical Curation Portal

Click for more details

MTkB

Kids Cancer Knowledgebase

Click for more details

  • 2024 Research Australia Awards